3.1.73 \(\int x^3 \sqrt {\cosh ^{-1}(a x)} \, dx\) [73]

Optimal. Leaf size=139 \[ -\frac {3 \sqrt {\cosh ^{-1}(a x)}}{32 a^4}+\frac {1}{4} x^4 \sqrt {\cosh ^{-1}(a x)}-\frac {\sqrt {\pi } \text {Erf}\left (2 \sqrt {\cosh ^{-1}(a x)}\right )}{256 a^4}-\frac {\sqrt {\frac {\pi }{2}} \text {Erf}\left (\sqrt {2} \sqrt {\cosh ^{-1}(a x)}\right )}{32 a^4}-\frac {\sqrt {\pi } \text {Erfi}\left (2 \sqrt {\cosh ^{-1}(a x)}\right )}{256 a^4}-\frac {\sqrt {\frac {\pi }{2}} \text {Erfi}\left (\sqrt {2} \sqrt {\cosh ^{-1}(a x)}\right )}{32 a^4} \]

[Out]

-1/64*erf(2^(1/2)*arccosh(a*x)^(1/2))*2^(1/2)*Pi^(1/2)/a^4-1/64*erfi(2^(1/2)*arccosh(a*x)^(1/2))*2^(1/2)*Pi^(1
/2)/a^4-1/256*erf(2*arccosh(a*x)^(1/2))*Pi^(1/2)/a^4-1/256*erfi(2*arccosh(a*x)^(1/2))*Pi^(1/2)/a^4-3/32*arccos
h(a*x)^(1/2)/a^4+1/4*x^4*arccosh(a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.28, antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 7, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.583, Rules used = {5884, 5953, 3393, 3388, 2211, 2235, 2236} \begin {gather*} -\frac {\sqrt {\pi } \text {Erf}\left (2 \sqrt {\cosh ^{-1}(a x)}\right )}{256 a^4}-\frac {\sqrt {\frac {\pi }{2}} \text {Erf}\left (\sqrt {2} \sqrt {\cosh ^{-1}(a x)}\right )}{32 a^4}-\frac {\sqrt {\pi } \text {Erfi}\left (2 \sqrt {\cosh ^{-1}(a x)}\right )}{256 a^4}-\frac {\sqrt {\frac {\pi }{2}} \text {Erfi}\left (\sqrt {2} \sqrt {\cosh ^{-1}(a x)}\right )}{32 a^4}-\frac {3 \sqrt {\cosh ^{-1}(a x)}}{32 a^4}+\frac {1}{4} x^4 \sqrt {\cosh ^{-1}(a x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3*Sqrt[ArcCosh[a*x]],x]

[Out]

(-3*Sqrt[ArcCosh[a*x]])/(32*a^4) + (x^4*Sqrt[ArcCosh[a*x]])/4 - (Sqrt[Pi]*Erf[2*Sqrt[ArcCosh[a*x]]])/(256*a^4)
 - (Sqrt[Pi/2]*Erf[Sqrt[2]*Sqrt[ArcCosh[a*x]]])/(32*a^4) - (Sqrt[Pi]*Erfi[2*Sqrt[ArcCosh[a*x]]])/(256*a^4) - (
Sqrt[Pi/2]*Erfi[Sqrt[2]*Sqrt[ArcCosh[a*x]]])/(32*a^4)

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3388

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5884

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcCosh[c*x])^n/(
m + 1)), x] - Dist[b*c*(n/(m + 1)), Int[x^(m + 1)*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])
), x], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]

Rule 5953

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(1/(b*c^(m + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p], Subs
t[Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d1,
 e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && IGtQ[p + 3/2, 0] && IGtQ[m, 0]

Rubi steps

\begin {align*} \int x^3 \sqrt {\cosh ^{-1}(a x)} \, dx &=\frac {1}{4} x^4 \sqrt {\cosh ^{-1}(a x)}-\frac {1}{8} a \int \frac {x^4}{\sqrt {-1+a x} \sqrt {1+a x} \sqrt {\cosh ^{-1}(a x)}} \, dx\\ &=\frac {1}{4} x^4 \sqrt {\cosh ^{-1}(a x)}-\frac {\text {Subst}\left (\int \frac {\cosh ^4(x)}{\sqrt {x}} \, dx,x,\cosh ^{-1}(a x)\right )}{8 a^4}\\ &=\frac {1}{4} x^4 \sqrt {\cosh ^{-1}(a x)}-\frac {\text {Subst}\left (\int \left (\frac {3}{8 \sqrt {x}}+\frac {\cosh (2 x)}{2 \sqrt {x}}+\frac {\cosh (4 x)}{8 \sqrt {x}}\right ) \, dx,x,\cosh ^{-1}(a x)\right )}{8 a^4}\\ &=-\frac {3 \sqrt {\cosh ^{-1}(a x)}}{32 a^4}+\frac {1}{4} x^4 \sqrt {\cosh ^{-1}(a x)}-\frac {\text {Subst}\left (\int \frac {\cosh (4 x)}{\sqrt {x}} \, dx,x,\cosh ^{-1}(a x)\right )}{64 a^4}-\frac {\text {Subst}\left (\int \frac {\cosh (2 x)}{\sqrt {x}} \, dx,x,\cosh ^{-1}(a x)\right )}{16 a^4}\\ &=-\frac {3 \sqrt {\cosh ^{-1}(a x)}}{32 a^4}+\frac {1}{4} x^4 \sqrt {\cosh ^{-1}(a x)}-\frac {\text {Subst}\left (\int \frac {e^{-4 x}}{\sqrt {x}} \, dx,x,\cosh ^{-1}(a x)\right )}{128 a^4}-\frac {\text {Subst}\left (\int \frac {e^{4 x}}{\sqrt {x}} \, dx,x,\cosh ^{-1}(a x)\right )}{128 a^4}-\frac {\text {Subst}\left (\int \frac {e^{-2 x}}{\sqrt {x}} \, dx,x,\cosh ^{-1}(a x)\right )}{32 a^4}-\frac {\text {Subst}\left (\int \frac {e^{2 x}}{\sqrt {x}} \, dx,x,\cosh ^{-1}(a x)\right )}{32 a^4}\\ &=-\frac {3 \sqrt {\cosh ^{-1}(a x)}}{32 a^4}+\frac {1}{4} x^4 \sqrt {\cosh ^{-1}(a x)}-\frac {\text {Subst}\left (\int e^{-4 x^2} \, dx,x,\sqrt {\cosh ^{-1}(a x)}\right )}{64 a^4}-\frac {\text {Subst}\left (\int e^{4 x^2} \, dx,x,\sqrt {\cosh ^{-1}(a x)}\right )}{64 a^4}-\frac {\text {Subst}\left (\int e^{-2 x^2} \, dx,x,\sqrt {\cosh ^{-1}(a x)}\right )}{16 a^4}-\frac {\text {Subst}\left (\int e^{2 x^2} \, dx,x,\sqrt {\cosh ^{-1}(a x)}\right )}{16 a^4}\\ &=-\frac {3 \sqrt {\cosh ^{-1}(a x)}}{32 a^4}+\frac {1}{4} x^4 \sqrt {\cosh ^{-1}(a x)}-\frac {\sqrt {\pi } \text {erf}\left (2 \sqrt {\cosh ^{-1}(a x)}\right )}{256 a^4}-\frac {\sqrt {\frac {\pi }{2}} \text {erf}\left (\sqrt {2} \sqrt {\cosh ^{-1}(a x)}\right )}{32 a^4}-\frac {\sqrt {\pi } \text {erfi}\left (2 \sqrt {\cosh ^{-1}(a x)}\right )}{256 a^4}-\frac {\sqrt {\frac {\pi }{2}} \text {erfi}\left (\sqrt {2} \sqrt {\cosh ^{-1}(a x)}\right )}{32 a^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 101, normalized size = 0.73 \begin {gather*} \frac {\sqrt {\cosh ^{-1}(a x)} \Gamma \left (\frac {3}{2},-4 \cosh ^{-1}(a x)\right )+4 \sqrt {2} \sqrt {\cosh ^{-1}(a x)} \Gamma \left (\frac {3}{2},-2 \cosh ^{-1}(a x)\right )+\sqrt {-\cosh ^{-1}(a x)} \left (4 \sqrt {2} \Gamma \left (\frac {3}{2},2 \cosh ^{-1}(a x)\right )+\Gamma \left (\frac {3}{2},4 \cosh ^{-1}(a x)\right )\right )}{128 a^4 \sqrt {-\cosh ^{-1}(a x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3*Sqrt[ArcCosh[a*x]],x]

[Out]

(Sqrt[ArcCosh[a*x]]*Gamma[3/2, -4*ArcCosh[a*x]] + 4*Sqrt[2]*Sqrt[ArcCosh[a*x]]*Gamma[3/2, -2*ArcCosh[a*x]] + S
qrt[-ArcCosh[a*x]]*(4*Sqrt[2]*Gamma[3/2, 2*ArcCosh[a*x]] + Gamma[3/2, 4*ArcCosh[a*x]]))/(128*a^4*Sqrt[-ArcCosh
[a*x]])

________________________________________________________________________________________

Maple [A]
time = 9.00, size = 150, normalized size = 1.08

method result size
default \(-\frac {\sqrt {2}\, \left (-8 \sqrt {2}\, \sqrt {\mathrm {arccosh}\left (a x \right )}\, \sqrt {\pi }\, a^{2} x^{2}+4 \sqrt {2}\, \sqrt {\mathrm {arccosh}\left (a x \right )}\, \sqrt {\pi }+\pi \erf \left (\sqrt {2}\, \sqrt {\mathrm {arccosh}\left (a x \right )}\right )+\pi \erfi \left (\sqrt {2}\, \sqrt {\mathrm {arccosh}\left (a x \right )}\right )\right )}{64 \sqrt {\pi }\, a^{4}}-\frac {-64 \sqrt {\mathrm {arccosh}\left (a x \right )}\, \sqrt {\pi }\, a^{4} x^{4}+64 \sqrt {\mathrm {arccosh}\left (a x \right )}\, \sqrt {\pi }\, a^{2} x^{2}+\pi \erf \left (2 \sqrt {\mathrm {arccosh}\left (a x \right )}\right )+\pi \erfi \left (2 \sqrt {\mathrm {arccosh}\left (a x \right )}\right )-8 \sqrt {\mathrm {arccosh}\left (a x \right )}\, \sqrt {\pi }}{256 \sqrt {\pi }\, a^{4}}\) \(150\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*arccosh(a*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/64*2^(1/2)*(-8*2^(1/2)*arccosh(a*x)^(1/2)*Pi^(1/2)*a^2*x^2+4*2^(1/2)*arccosh(a*x)^(1/2)*Pi^(1/2)+Pi*erf(2^(
1/2)*arccosh(a*x)^(1/2))+Pi*erfi(2^(1/2)*arccosh(a*x)^(1/2)))/Pi^(1/2)/a^4-1/256*(-64*arccosh(a*x)^(1/2)*Pi^(1
/2)*a^4*x^4+64*arccosh(a*x)^(1/2)*Pi^(1/2)*a^2*x^2+Pi*erf(2*arccosh(a*x)^(1/2))+Pi*erfi(2*arccosh(a*x)^(1/2))-
8*arccosh(a*x)^(1/2)*Pi^(1/2))/Pi^(1/2)/a^4

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arccosh(a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3*sqrt(arccosh(a*x)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arccosh(a*x)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{3} \sqrt {\operatorname {acosh}{\left (a x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*acosh(a*x)**(1/2),x)

[Out]

Integral(x**3*sqrt(acosh(a*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arccosh(a*x)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^3\,\sqrt {\mathrm {acosh}\left (a\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*acosh(a*x)^(1/2),x)

[Out]

int(x^3*acosh(a*x)^(1/2), x)

________________________________________________________________________________________